Supramolecular architectures of molecularly thin yet robust free-standing layers.

Abstract

Stable, single-nanometer thin, and free-standing two-dimensional layers with controlled molecular architectures are desired for several applications ranging from (opto-)electronic devices to nanoparticle and single-biomolecule characterization. It is, however, challenging to construct these stable single molecular layers via self-assembly, as the cohesion of those systems is ensured only by in-plane bonds. We herein demonstrate that relatively weak noncovalent bonds of limited directionality such as dipole-dipole (-CN⋅⋅⋅NC-) interactions act in a synergistic fashion to stabilize crystalline monomolecular layers of tetrafunctional calixarenes. The monolayers produced, demonstrated to be free-standing, display a well-defined atomic structure on the single-nanometer scale and are robust under a wide range of conditions including photon and electron radiation. This work opens up new avenues for the fabrication of robust, single-component, and free-standing layers via bottom-up self-assembly

Similar works

Full text

eScholarship - University of CaliforniaProvided a free PDF (195.62 KB)

/13030/qt2nd0z3ghoai:escholarship.org/ark:/13030/qt2nd0z3gh
Last time updated on November 6, 2019

This paper was published in eScholarship - University of California.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.