For a given finite set T including zero, an L(t, 1)-colouring of a graph G is an assignment of non-negative integers to the vertices of G such that the difference between the colours of adjacent vertices must not belong to the set T and the colours of vertices that are at distance two must be distinct. For a graph G, the L(t, 1)-span of G is the minimum of the highest colour used to colour the vertices of a graph out of all the possible L(t, 1)-colourings. We study the L(t, 1)-span of cycles with respect to specific sets
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.