Location of Repository

Microstructure development and hardening during high pressure torsion of commercially pure aluminium: strain reversal experiments and a dislocation based model

By Jiuwen Zhang, Nong Gao and Marco J. Starink


The effect of strain reversal on hardening due to high pressure torsion (HPT) was investigated using commercially pure aluminium. Hardening is lower for cyclic HPT (c-HPT) as compared to monotonic HPT (m-HPT). When using a cycle consisting of a rotation of 90 degree per half cycle, there is only a small increase in hardness if the total amount of turns is increased from 1 to 16. Single reversal HPT (sr-HPT) processing involves torsion in one direction followed by a (smaller) torsion in the opposite direction. It is shown that a small reversal of 0.25 turn (90 degree) reduces hardness drastically, and that decrease is most marked for the centre region. These behaviours and other effects are interpreted in terms of the average density of geometrically necessary dislocations (GNDs) and statistically stored dislocations (SSDs). A model is presented that describes the experimental results well. A key element of the model is the assumption that at the very high strains developed in severe plastic deformation processes such as HPT, the dislocation density reaches a saturation value. The model indicates that the strength / hardness is predominantly due to GNDs and SSDs

Topics: TA, TN
Year: 2011
OAI identifier: oai:eprints.soton.ac.uk:168241
Provided by: e-Prints Soton

Suggested articles



  1. (2002). Aluminium Structures: A guide to their specifications, Design, doi
  2. (1953). Dislocations and Plastic Flow in Crystals, doi
  3. (1953). Dislocations in Crystals, McGraw-Hill, doi
  4. (1956). Les Dislocations, Gauthier-Villars,
  5. (1970). London A 319
  6. (2010). PhD Thesis, doi
  7. (1951). Proc Phys Soc Sect
  8. (1966). Strength and structure of engineering materials.
  9. Studies in large plastic flow and fracture, 1952,McGraw-Hill, doi

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.