Skip to main content
Article thumbnail
Location of Repository

ANALYTIC ASPECTS OF THE SHUFFLE PRODUCT

By Marni Mishna and Mike Zabrocki

Abstract

There exist very lucid explanations of the combinatorial origins of rational and algebraic functions, in particular with respect to regular and context free languages. In the search to understand how to extend these natural correspondences, we find that the shuffle product models many key aspects of D-finite generating functions, a class which contains algebraic. We consider several different takes on the shuffle product, shuffle closure, and shuffle grammars, and give explicit generating function consequences. In the process, we define a grammar class that models D-finite generating functions

Year: 2008
OAI identifier: oai:CiteSeerX.psu:10.1.1.371.4659
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://hal.archives-ouvertes.f... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.