Skip to main content
Article thumbnail
Location of Repository

Unconditional characterizations of non-interactive zeroknowledge

By Rafael Pass and Abhi Shelat


Abstract. Non-interactive zero-knowledge (NIZK) proofs have been investigated in two models: the Public Parameter model and the Secret Parameter model. In the former, a public string is “ideally ” chosen according to some efficiently samplable distribution and made available to both the Prover and Verifier. In the latter, the parties instead obtain correlated (possibly different) private strings. To add further choice, the definition of zero-knowledge in these settings can either be non-adaptive or adaptive. In this paper, we obtain several unconditional characterizations of computational, statistical and perfect NIZK for all combinations of these settings. Specifically, we show: In the secret parameter model, NIZK = NISZK = NIPZK = AM. In the public parameter model, ⊲ for the non-adaptive definition, NISZK ⊆ AM ∩ coAM, ⊲ for the adaptive one, it also holds that NISZK ⊂ BPP/1, ⊲ for computational NIZK for “hard ” languages, one-way functions are both necessary and sufficient. From our last result, we arrive at the following unconditional characterization of computational NIZK in the public parameter model (which complements well-known results for interactive zero-knowledge): Either NIZK proofs exist only for “easy ” languages (i.e., languages that are not hard-on-average), or they exist for all of AM (i.e., all languages which admit non-interactive proofs).

Year: 2005
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.