Location of Repository

Shortly after Szemerédi’s proof that a set of positive upper density contains arbitrarily long arithmetic progressions, Furstenberg gave a new proof of this theorem using ergodic theory. This gave rise to the field of combinatorial ergodic theory, in which problems motivated by additive combinatorics are addressed kwith ergodic theory. Combinatorial ergodic theory has since produced combinatorial results, some of which have yet to be obtained by other means, and has also given a deeper understanding of the structure of measure preserving systems. We outline the ergodic theory background needed to understand these results, with an emphasis on recent developments in ergodic theory and the relation to recent developments in additive combinatorics. These notes are based on four lectures given during the School on Additive Combinatorics at the Centre de recherches mathématiques, Montreal in April, 2006. The talks were aimed at an audience without background in ergodic theory. No attempt is made to include complete proofs of all statements and often the reader is referred to the original sources. Many of the proofs included are classic, included as an indication of which ingredients play a role in the developments of the past ten years

Year: 2007

OAI identifier:
oai:CiteSeerX.psu:10.1.1.362.9147

Provided by:
CiteSeerX

Download PDF:To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.