Skip to main content
Article thumbnail
Location of Repository


By David Ben-zvi and David Nadler


Abstract. We present a simple proof of a strengthening of the derived Beilinson-Bernstein localization theorem using the formalism of descent in derived algebraic geometry. The arguments and results apply to arbitrary modules without the need to fix infinitesimal character. Roughly speaking, we demonstrate that all Ug-modules are the invariants, or equivalently coinvariants, of the action of intertwining functors (a refined form of Weyl group symmetry). This is a quantum version of descent for the Grothendieck-Springer simultaneous resolution

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.