Location of Repository

Rheology of F-Actin Solutions Determined from Thermally-Driven Tracer Motion

By T. G. Mason, T. Gisler, K. Kroy, E. Frey and D. A. Weitz

Abstract

We report measurements of the frequency-dependent complex shear modulus of semidilute F-actin solutions based on optical observations of the thermally-excited motion of monodisperse tracer microspheres. Because the tracer spheres cause incident laser light to be strongly scattered, we determine their average motion using diffusing wave spectroscopy (DWS). From the measured mean square displacement, we extract the retardation spectrum of the actin solution using a regularized fit based on a discretized model involving a linear superposition of harmonically bound brownian particles. At an actin concentration of C = 1.2 mg/ml and for microspheres of radius a = 0.8 m, we find that the complex modulus exhibits a dominant low frequency plateau modulus and a high frequency rise with the loss modulus dominating above a crossover frequency. Over a limited range of frequencies well above the crossover frequency, the magnitude of the high frequency storage modulus, G'(), is consistent with the p..

Year: 2000
OAI identifier: oai:CiteSeerX.psu:10.1.1.36.3487
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.deas.harvard.edu/pr... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.