Location of Repository

Graph Matching for Shape Retrieval

By Benoit Huet, Andrew D.J. Cross and Edwin R. Hancock

Abstract

This paper describes a Bayesian graph matching algorithm for data-mining from large structural data-bases. The matching algorithm uses edge-consistency and node attribute similaritytodetermine the aposteriori probability of a query graph for eachofthe candidate matches in the data-base. The node feature-vectors are constructed by computing normalised histograms of pairwise geometric attributes. Attribute similarity is assessed by computing the Bhattacharyya distance between the histograms. Recognition is realised by selecting the candidate from the data-base which has the largest a posteriori probability. We illustrate the recognition technique on a data-base containing 2500 line patterns extracted from real-world imagery. Here the recognition technique is shown to significantly outperform a number of algorithm alternatives. 1 Introduction Since BarrowandPopplestone [1] first suggested that relational structures could be used to representandinterpret 2D scenes, there has ..

Publisher: MIT Press
Year: 1999
OAI identifier: oai:CiteSeerX.psu:10.1.1.36.2743
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.eurecom.fr/~huet/pa... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.