We study Bayes-Nash equilibria in a large class of anonymous order-based auctions. These include the generalized first-price auction for allocating positions to bidders, e.g., for sponsored search. We show that when bidders ’ values are independent and identically distributed there is a unique Bayes Nash equilibrium; This equilibrium is symmetric and efficient. Importantly, our proof is simple and structurally revealing. This uniqueness result for the generalized first-price auction is in stark contrast to the generalized second-price auction where there may be no efficient equilibrium. This result suggests, e.g., that first-price payment semantics may have advantages over second-price payment semantics. Our results extend also to certain models of risk aversion
To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.