Skip to main content
Article thumbnail
Location of Repository

Combining Classifiers with Informational Confidence

By Stefan Jaeger, Huanfeng Ma and David Doermann


Summary. We propose a new statistical method for learning normalized confidence values in multiple classifier systems. Our main idea is to adjust confidence values so that their nominal values equal the information actually conveyed. In order to do so, we assume that information depends on the actual performance of each confidence value on an evaluation set. As information measure, we use Shannon’s well-known logarithmic notion of information. With the confidence values matching their informational content, the classifier combination scheme reduces to the simple sum-rule, theoretically justifying this elementary combination scheme. In experimental evaluations for script identification, and both handwritten and printed character recognition, we achieve a consistent improvement on the best single recognition rate. We cherish the hope that our information-theoretical framework helps fill the theoretical gap we still experience in classifier combination, putting the excellent practical performance of multiple classifier systems on a more solid basis.

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • http://lampsrv02.umiacs.umd.ed... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.