Skip to main content
Article thumbnail
Location of Repository

A Dynamic Logics of Dynamical Systems

By André Platzer


We study the logic of dynamical systems, that is, logics and proof principles for properties of dynamical systems. Dynamical systems are mathematical models describing how the state of a system evolves over time. They are important for modeling and understanding many applications, including embedded systems and cyber-physical systems. In discrete dynamical systems, the state evolves in discrete steps, one step at a time, as described by a difference equation or discrete state transition relation. In continuous dynamical systems, the state evolves continuously along a function, typically described by a differential equation. Hybrid dynamical systems or hybrid systems combine both discrete and continuous dynamics. Distributed hybrid systems combine distributed systems with hybrid systems, i.e., they are multi-agent hybrid systems that interact through remote communication or physical interaction. Stochastic hybrid systems combine stochastic dynamics with hybrid systems. We survey dynamic logics for specifying and verifying properties for each of those classes of dynamical systems. A dynamic logic is a first-order modal logic with a pair of parametrized modal operators for each dynamical system to express necessary or possible properties of their transition behavior. Due to their full basis of first-order modal logic operators, dynamic logics can express a rich variety of system properties, including safety, controllability, reactivity, liveness, and quantified parametrized properties, even abou

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.