Skip to main content
Article thumbnail
Location of Repository

Journal of Geodetic Science DOI: 10.2478/v10156-010-0002-7 • Discrete Spherical Harmonic Transforms for Equiangular Grids of Spatial and Spectral Data Research Article

By J. A. Rod Blais

Abstract

Spherical Harmonic Transforms (SHTs) which are non-commutative Fourier transforms on the sphere are critical in global geopotential and related applications. Among the best known global strategies for discrete SHTs of band-limited spherical functions are Chebychev quadratures and least squares for equiangular grids. With proper numerical preconditioning, independent of latitude, reliable analysis and synthesis results for degrees and orders over 3800 in double precision arithmetic have been achieved and explicitly demonstrated using white noise simulations. The SHT synthesis and analysis can easily be modified for the ordinary Fourier transform of the data matrix and the mathematical situation is illustrated in a new functional diagram. Numerical analysis has shown very little differences in the numerical conditioning and computational efforts required when working with the two-dimensional (2D) Fourier transform of the data matrix. This can be interpreted as the spectral form of the discrete SHT which can be useful in multiresolution and other applications. Numerical results corresponding to the latest Earth Geopotential Model EGM 2008 of maximum degree and order 2190 are included with some discussion of the implications when working with such spectral sequences of fast decreasing magnitude. Keywords: Fourier transforms • geocomputations • geopotential modeling • spherical harmonic

Topics: © Versita Warsaw and Springer-Verlag Berlin Heidelberg
Year: 2010
OAI identifier: oai:CiteSeerX.psu:10.1.1.353.6126
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://people.ucalgary.ca/~bla... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.