Skip to main content
Article thumbnail
Location of Repository

REAL CLOSED SEPARATION THEOREMS AND APPLICATIONS TO GROUP ALGEBRAS

By Tim Netzer and Andreas ThomTim Netzer and Andreas Thom

Abstract

Dedicated to Konrad Schmüdgen on the occasion of his 65th birthday In this paper we prove a strong Hahn–Banach theorem: separation of disjoint convex sets by linear forms is possible without any further conditions if the target field � is replaced by a more general real closed extension field. From this we deduce a general Positivstellensatz for ∗-algebras, involving representations over real closed fields. We investigate the class of group algebras in more detail. We show that the cone of sums of squares in the augmentation ideal has an interior point if and only if the first cohomology vanishes. For groups with Kazhdan’s property (T), the result can be strengthened to interior points in the ℓ 1-metric. We finally reprove some strong Positivstellensätze by Helton and Schmüdgen, using our separation method. 1

Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.353.5705
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://msp.org/pjm/2013/263-2/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.