Skip to main content
Article thumbnail
Location of Repository

A Lyapunov Based Stable Online Learning Algorithm For Nonlinear Dynamical Systems Using Extreme Learning Machines

By Vijay Manik, An Janakiraman, Xuanlong Nguyen and Dennis Assanis


Abstract — Extreme Learning Machine (ELM) is a promising learning scheme for nonlinear classification and regression problems and has shown its effectiveness in the machine learning literature. ELM represents a class of generalized single hidden layer feed-forward networks (SLFNs) whose hidden layer parameters are assigned randomly resulting in an extremely fast learning speed along with superior generalization performance. It is well known that the online sequential learning algorithm (OS-ELM) based on recursive least squares [1] might result in ill-conditioning of the Hessian matrix and hence instability in the parameter estimation. To address this issue, the stability theory of Lyapunov is utilized to develop an online learning algorithm for temporal data from dynamic systems and time series. The developed algorithm results in parameter estimation that is globally asymptotically stable. Simulations results of the developed algorithm compared against online sequential ELM (OS-ELM) and the offline batch learning ELM (O-ELM) show that the online Lyapunov ELM algorithm can perform online learning at reduced computation, comparable accuracy and with a guarantee on the boundedness of the estimated system. I

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.