Skip to main content
Article thumbnail
Location of Repository

Real-Time Continuous 6D Relocalisation for Depth Cameras

By José Martínez-carranza and Walterio Mayol-cuevas


Abstract—This paper presents results of a system performing visual 6-D relocalisation at every single frame and in real time, such as is useful in re-exploration of scenes or for loop-closure in earnest. Our method uses ideas from fast state-of-the-art binary descriptors combined with a Locality-Sensitive-Hashing technique to perform nearest-neighbour search as well as a 3D validation and sampling strategy. Albeit appealing for speed and memory footprint reasons, binary descriptors lead to a weak discrimination response which produces several false positive matches. This results in having to invest longer in removing outliers to compute a valid pose than when using more expensive descriptors. To alleviate this problem we propose a geometric validation stage that assists in the selection of good sample matches and benefits from the depth information available in depth cameras such as RGB-D or stereo. Our experiments suggest the feasibility of our approach with a relocalisation performance of 73 % while running at 54Hz. Furthermore, in our tests, our system reduces in 95 % the memory footprint compared to a system using conventional floating-point descriptors. I

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.