Skip to main content
Article thumbnail
Location of Repository

Recommender systems with social regularization

By Hao Ma, Michael R. Lyu, Dengyong Zhou, Irwin King and Chao Liu

Abstract

Although Recommender Systems have been comprehensively analyzed in the past decade, the study of social-based recommender systems just started. In this paper, aiming at providing a general method for improving recommender systems by incorporating social network information, we propose a matrix factorization framework with social regularization. The contributions of this paper are four-fold: (1) We elaborate how social network information can benefit recommender systems; (2) We interpret the differences between social-based recommender systems and trust-aware recommender systems; (3) We coin the term Social Regularization to represent the social constraints on recommender systems, and we systematically illustrate how to design a matrix factorization objective function with social regularization; and (4) The proposed method is quite general, which can be easily extended to incorporate other contextual information, like social tags, etc. The empirical analysis on two large datasets demonstrates that our approaches outperform other state-of-the-art methods

Topics: General Terms Algorithms, Experimentation Keywords Recommender Systems, Collaborative Filtering, Social Network, Matrix Factorization, Social Regularization
Year: 2011
OAI identifier: oai:CiteSeerX.psu:10.1.1.352.9959
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://research.microsoft.com/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.