Skip to main content
Article thumbnail
Location of Repository


By João Marcos


This is an initial systematic study of the properties of negation from the point of view of abstract deductive systems. A unifying framework of multiple-conclusion consequence relations is adopted so as to allow us to explore symmetry in exposing and matching a great number of positive contextual sub-classical rules involving this logical constant —among others, well-known forms of proof by cases, consequentia mirabilis and reductio ad absurdum. Finer definitions of paraconsistency and the dual paracompleteness can thus be formulated, allowing for pseudo-scotus and ex contradictione to be differentiated and for a comprehensive version of the Principle of Non-Triviality to be presented. A final proposal is made to the effect that —pure positive rules involving negation being often fallible — a characterization of what most negations in the literature have in common should rather involve, in fact, a reduced set of negative rules

Topics: negation, abstract deductive systems, multiple-conclusion logic, paraconsistency
Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.