Skip to main content
Article thumbnail
Location of Repository

NONCONFORMING TETRAHEDRAL MIXED FINITE ELEMENTS FOR ELASTICITY

By Douglas Arnold, Gerard Awanou and Ragnar Winther

Abstract

Abstract. This paper presents a nonconforming finite element approximation of the space of symmetric tensors with square integrable divergence, on tetrahedral meshes. Used for stress approximation together with the full space of piecewise linear vector fields for displacement, this gives a stable mixed finite element method which is shown to be linearly convergent for both the stress and displacement, and which is significantly simpler than any stable conforming mixed finite element method. The method may be viewed as the three-dimensional analogue of a previously developed element in two dimensions. As in that case, a variant of the method is proposed as well, in which the displacement approximation is reduced to piecewise rigid motions and the stress space is reduced accordingly, but the linear convergence is retained. 1

Year: 1210
OAI identifier: oai:CiteSeerX.psu:10.1.1.352.9544
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www.ima.umn.edu/~arnold... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.