Skip to main content
Article thumbnail
Location of Repository

Solutions in the large for the nonlinear hyperbolic conservation laws of gas dynamics

By J. Blake Temple

Abstract

The constraints under which a gas at a certain state will evolve can be given by three partial differential equations which express the conservation of momentum, mass, and energy. In these equations, a particular gas is defined by specifying the constitutive relation e = e(u, S), where e = specific internal energy, v = specific volume, and S = specific entropy. The energy function e =-In u + (S/R) describes a polytropic gas for the exponent y = 1, and for this choice of e(V, S), global weak solutions for bounded measurable data having finite total variation were given by Nishida in [lo]. Here the following general existence theorem is obtained: let e,(v, S) be any smooth one parameter family of energy functions such that at E = 0 the energy is given by e&v, S) =-In v + (S/R). It is proven that there exists a constant C independent of E, such that, if E. (total variation of the initial data) < C, then there exists a global weak solution to the equations. Since any energy function can be connected to e&V, S) by a smooth parameterization, our results give an existence theorem for all the conservation laws of gas dynamics. As a corollary we obtain an existence theorem of Liu, Indiana Univ. Math. J. 26, No. 1 (1977) for polytropic gases. The main point in this argument is that the nonlinear functional used to make the Glimm Scheme converge, depends only on properties of the equations at E = 0. For general n x n systems of conservation laws, this technique provides an alternate proof for the interaction estimates in Glimm’s 1965 paper. The new result here is that certain interaction differences are bounded by E as well as by the approaching waves

Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.352.7087
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • https://www.math.ucdavis.edu/~... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.