Skip to main content
Article thumbnail
Location of Repository

Biclustering Protein Complex Interactions with a Biclique Finding Algorithm. InICDM

By Chris Ding, Ya Zhang, Stephen R. Holbrook and Tao Li

Abstract

Biclustering has many applications in text mining, web clickstream mining, and bioinformatics. When data entries are binary, the tightest biclusters become bicliques. We propose a flexible and highly efficient algorithm to compute bicliques. We first generalize the Motzkin-Straus formalism for computing the maximal clique from L1 constraint to Lp constraint, which enables us to provide a generalized Motzkin-Straus formalism for computing maximal-edge bicliques. By adjusting parameters, the algorithm can favor biclusters with more rows less columns, or vice verse, thus increasing the flexibility of the targeted biclusters. We then propose an algorithm to solve the generalized Motzkin-Straus optimization problem. The algorithm is provably convergent and has a computational complexity of O(|E|) where |E | is the number of edges. Using this algorithm, we bicluster the yeast protein complex interaction network. We find that biclustering protein complexes at the protein level does not clearly reflect the functional linkage among protein complexes in many cases, while biclustering at protein domain level can reveal many underlying linkages. We show several new biologically significant results.

Year: 2006
OAI identifier: oai:CiteSeerX.psu:10.1.1.352.6623
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://users.cis.fiu.edu/~taol... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.