Location of Repository

Abstract. We consider the problem of computing the smallest possible distortion for embedding of a given n-point metric space into R d,whered is fixed (and small). For d = 1, it was known that approximating the minimum distortion with a factor better than roughly n 1/12 is NP-hard. From this result we derive inapproximability with a factor roughly n 1/(22d−10) for every fixed d ≥ 2, by a conceptually very simple reduction. However, the proof of correctness involves a nontrivial result in geometric topology (whose current proof is based on ideas due to Jussi Väisälä). For d ≥ 3, we obtain a stronger inapproximability result by a different reduction: assuming P=NP, no polynomial-time algorithm can distinguish between spaces embeddable in R d with constant distortion from spaces requiring distortion at least n c/d, for a constant c>0. The exponent c/d has the correct order of magnitude, since every n-point metric space can be embedded in R d with distortion O(n 2/d log 3/2 n) and such an embedding can be constructed in polynomial time by random projection. For d = 2, we give an example of a metric space that requires a large distortion for embedding in R 2, while all not too large subspaces of it embed almost isometrically. 1

Year: 2013

OAI identifier:
oai:CiteSeerX.psu:10.1.1.352.6609

Provided by:
CiteSeerX

Download PDF:To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.