Skip to main content
Article thumbnail
Location of Repository

Near-optimal algorithms for online matrix prediction

By Elad Hazan, Satyen Kale and Shai Shalev-shwartz


In several online prediction problems of recent interest the comparison class is composed of matrices with bounded entries. For example, in the online max-cut problem, the comparison class is matrices which represent cuts of a given graph and in online gambling the comparison class is matrices which represent permutations over n teams. Another important example is online collaborative filtering in which a widely used comparison class is the set of matrices with a small trace norm. In this paper we isolate a property of matrices, which we call (β, τ)decomposability, and derive an efficient online learning algorithm, that enjoys a regret bound of Õ ( √ β τ T) for all problems in which the comparison class is composed of (β, τ)-decomposable matrices. By analyzing the decomposability of cut matrices, triangular matrices, and low tracenorm matrices, we derive near optimal regret bounds for online max-cut, online gambling, and online collaborative filtering. In particular, this resolves (in the affirmative) an open problem posed by Abernethy [2010], Kleinberg et al. [2010]. Finally, we derive lower bounds for the three problems and show that our upper bounds are optimal up to logarithmic factors. In particular, our lower bound for the online collaborative filtering problem resolves another open problem posed by Shamir and Srebro [2011].

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.