Skip to main content
Article thumbnail
Location of Repository

Hessian-based model reduction: large-scale inversion and prediction

By C. Lieberman, K. Willcox and B. Van Bloemen Wa

Abstract

Hessian-based model reduction was previously proposed as an approach in deriving reduced models for the solution of large-scale linear inverse problems by targeting accuracy in observation outputs. A controltheoretic view of Hessian-based model reduction that hinges on the equality between the Hessian and the transient observability gramian of the underlying linear system is presented. The model reduction strategy is applied to a large-scale (O.10 6 / degrees of freedom) three-dimensional contaminant transport problem in an urban environment, an application that requires real-time computation. In addition to the inversion accuracy, the ability of reduced models of varying dimension to make predictions of the contaminant evolution beyond the time horizon of observations is studied. Results indicate that the reduced models have a factor O.1000/ speedup in computing time for the same level of accuracy. Copyright © 2012 John Wiley & Sons, Ltd

Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.352.6170
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://acdl.mit.edu/LiebermanI... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.