Skip to main content
Article thumbnail
Location of Repository

Mining Collective Intelligence in Diverse Groups

By Guo-jun Qi, Charu C. Aggarwal, Jiawei Han and Thomas Huang

Abstract

Collective intelligence, which aggregates the shared information from large crowds, is often negatively impacted by unreliable information sources with the low quality data. This becomes a barrier to the effective use of collective intelligence in a variety of applications. In order to address this issue, we propose a probabilistic model to jointly assess the reliability of sources and find the true data. We observe that different sources are often not independent of each other. Instead, sources are prone to be mutually influenced, which makes them dependent when sharing information with each other. High dependency between sources makes collective intelligence vulnerable to the overuse of redundant (and possibly incorrect) information from the dependent sources. Thus, we reveal the latent group structure among dependent sources, and aggregate the information at the group level rather than from individual sources directly. This can prevent the collective intelligence from being inappropriately dominated by dependent sources. We will also explicitly reveal the reliability of groups, and minimize the negative impacts of unreliable groups. Experimental results on real-world data sets show the effectiveness of the proposed approach with respect to existing algorithms

Topics: Categories and Subject Descriptors H.2.8 [Database applications, Data mining, Statistical databases Keywords Collective intelligence, Crowdsourcing, Robust classifier
Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.352.5654
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://www2013.org/proceedings... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.