Skip to main content
Article thumbnail
Location of Repository

Structure Learning of Undirected Graphical Models with Contrastive Divergence

By Jie Liu


Structure learning of Markov random fields (MRFs) is generally NP-hard (Karger & Srebro, 2001). Many structure learners and theoretical results are under the correlation decay assumption in the sense that for any two nodes i and k, the information about node i captured by node k is less than that captured by node j where j is the neighbor of i on the shortest path between i and k (Netrapalli et al., 2010). In this paper, we propose to learn structure of MRFs with contrastive divergence (Hinton, 2002) and demonstrate that our structure learner can recover the structures of these correlation non-decay MRFs. 1

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.