Skip to main content
Article thumbnail
Location of Repository

DISTRIBUTED RANDOM CONVEX PROGRAMMING VIA CONSTRAINTS CONSENSUS

By L. Carlone, V. Srivastava, F. Bullo and G. C. Calafiore

Abstract

This paper discusses distributed approaches for the solution of random convex programs (RCP). RCPs are convex optimization problems with a (usually large) number N of randomly extracted constraints; they arise in several applicative areas, especially in the context of decision under uncertainty, see [2, 3]. We here consider a setup in which instances of the random constraints (the scenario) are not held by a single centralized processing unit, but are instead distributed among different nodes of a network. Each node “sees ” only a small subset of the constraints, and may communicate with neighbors. The objective is to make all nodes converge to the same solution as the centralized RCP problem. To this end, we develop two distributed algorithms that are variants of the constraints consensus algorithm [4, 5]: the active constraints consensus (ACC) algorithm, and the vertex constraints consensus (VCC) algorithm. We show that the ACC algorithm computes the overall optimal solution in finite time, and with almost surely bounded communication at each iteration of the algorithm. The VCC algorithm is instead tailored for the special case in which the constraint functions are convex also w.r.t. the uncertain parameters, and it computes the solution in a number of iterations bounded by the diameter of the communication graph. We further devise a variant of the VCC algorithm, namely quantized vertex constraints consensus (qVCC), to cope with the case in which communication bandwidth among processors is bounded. We discuss several applications of the proposed distributed techniques, including estimation, classification, and random model predictive control, and we present a numerical analysis of the performance of the proposed methods. As a complementary numerical result, we show that the parallel computation of the scenario solution using ACC algorithm significantly outperforms its centralized equivalent

Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.352.4444
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://motion.me.ucsb.edu/pdf/... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.