Skip to main content
Article thumbnail
Location of Repository

Effective Robot Task Learning by Focusing on Task-relevant Objects

By Kyu Hwa Lee, Jinhan Lee, Andrea L. Thomaz and Aaron F. Bobick


Abstract — In a Robot Learning from Demonstration framework involving environments with many objects, one of the key problems is to decide which objects are relevant to a given task. In this paper, we analyze this problem and propose a biologically-inspired computational model that enables the robot to focus on the task-relevant objects. To filter out incompatible task models, we compute a Task Relevance Value (TRV) for each object, which shows a human demonstrator’s implicit indication of the relevance to the task. By combining an intentional action representation with ‘motionese ’ [2], our model exhibits recognition capabilities compatible with the way that humans demonstrate. We evaluate the system on demonstrations from five different human subjects, showing its ability to correctly focus on the appropriate objects in these demonstrations. I

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.