Location of Repository

The theory of hypergeometric functions over finite fields was developed in the mid-1980s by Greene. Since that time, connections between these functions and elliptic curves and modular forms have been investigated by mathematicians such as Ahlgren, Frechette, Koike, Ono, and Papanikolas. In this dissertation, we begin by giving a survey of these results and introducing hypergeometric functions over finite fields. We then focus on a particular family of elliptic curves whose j-invariant gives an automorphism of P 1. We present an explicit relationship between the number of points on this family over Fp and the values of a particular hypergeometric function over Fp. Then, we use the same family of elliptic curves to construct a formula for the traces of Hecke operators on cusp forms in level 1, utilizing results of Hijikata and Schoof. This leads to formulas for Ramanujan’s τ-function in terms of hypergeometric functions

Year: 2007

OAI identifier:
oai:CiteSeerX.psu:10.1.1.352.2832

Provided by:
CiteSeerX

Download PDF:To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.