Skip to main content
Article thumbnail
Location of Repository

Compressed sensing of simultaneous low-rank and joint-sparse matrices

By Mohammad Golbabaee and Pierre Vandergheynst

Abstract

In this paper we consider the problem of recovering a high dimensional data matrix from a set of incomplete and noisy linear measurements. We introduce a new model that can efficiently restrict the degrees of freedom of the problem and is generic enough to find a lot of applications, for instance in multichannel signal compressed sensing (e.g. sensor networks, hyperspectral imaging) and compressive sparse principal component analysis (s-PCA). We assume data matrices have a simultaneous low-rank and joint sparse structure, and we propose a novel approach for efficient compressed sensing (CS) of such data. Our CS recovery approach is based on a convex minimization problem that incorporates this restrictive structure by jointly regularizing the solutions with their nuclear (trace) norm and ℓ2/ℓ1 mixed norm. Our theoretical analysis uses a new notion of restricted isometry property (RIP) and shows that, for sampling schemes satisfying RIP, our approach can stably recover all low-rank and joint-sparse matrices. For a certain class of random sampling schemes satisfying a particular concentration bound (e.g. the subgaussian ensembles) we derive a lower bound on the number of CS measurements indicating the near-optimality of our recovery approach as well as a significant enhancement compared to the state-of-the-art. We introduce an iterative algorithm based on proximal calculus in order to solve the joint nuclear and ℓ2/ℓ1 norms minimization problem and, finally, we illustrate the empirical recovery phase transition of this approach by series of numerical experiments

Year: 2012
OAI identifier: oai:CiteSeerX.psu:10.1.1.352.1656
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://infoscience.epfl.ch/rec... (external link)
  • http://infoscience.epfl.ch/rec... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.