Review of long period fiber gratings written by CO<sub>2</sub> laser

Abstract

This paper presents a systematic review of long period fiber gratings (LPFGs) written by the CO2 laser irradiation technique. First, various fabrication techniques based on CO2 laser irradiations are demonstrated to write LPFGs in different types of optical fibers such as conventional glass fibers, solid-core photonic crystal fibers, and air-core photonic bandgap fibers. Second, possible mechanisms, e.g., residual stress relaxation, glass structure changes, and physical deformation, of refractive index modulations in the CO2-laser-induced LPFGs are analyzed. Third, asymmetrical mode coupling, resulting from single-side laser irradiation, is discussed to understand unique optical properties of the CO2-laser-induced LPFGs. Fourthly, several pre-treatment and post-treatment techniques are proposed to enhance the efficiency of grating fabrications. Fifthly, sensing applications of the CO2-laser-induced LPFGs are investigated to develop various LPFG-based temperature, strain, bend, torsion, pressure, and biochemical sensors. Finally, communication applications of the CO2-laser-induced LPFGs are investigated to develop various LPFG-based band-rejection filters, gain equalizers, polarizers, and couplers

Similar works

Full text

thumbnail-image

Southampton (e-Prints Soton)

redirect
Last time updated on 02/07/2012

This paper was published in Southampton (e-Prints Soton).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.