Skip to main content
Article thumbnail
Location of Repository

Gauging the flexibility of fluorescent markers for the interpretation of fluorescence resonance energy transfer

By Jan J. Rindermann, Yosef Akhtman, James Richardson, Tom Brown and Pavlos G. Lagoudakis

Abstract

Intramolecular distances in proteins and other biomolecules can be studied in living cells by means of fluorescence resonance energy transfer (FRET) in steady-state or pulsed-excitation experiments. The major uncertainty originates from the unknown orientation between the optical dipole moments of the fluorescent markers, especially when the molecule undergoes thermal fluctuations in physiological conditions. We introduce a statistical method based on the von Mises?Fisher distribution for the interpretation of fluorescence decay dynamics in donor?acceptor FRET pairs that allows us to retrieve both the orientation and the extent of directional fluctuations of the involved dipole moments. We verify the method by applying it to donor?acceptor pairs controllably attached to DNA helices and find that common assumptions such as complete rotational freedom or fully hindered rotation of the dipoles fail a physical interpretation of the fluorescence decay dynamics. This methodology is applicable in single-molecule and ensemble measurements of FRET to derive more accurate distance estimates from optical experiments, without the need for more complex and expensive NMR studie

Topics: QC, QD
Year: 2011
OAI identifier: oai:eprints.soton.ac.uk:179809
Provided by: e-Prints Soton
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1021/ja10... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.