Skip to main content
Article thumbnail
Location of Repository

Optimum design of experiments for statistical inference

By Steven G. Gilmour and Luzia A. Trinca


One attractive feature of optimum design criteria, such as D- and A-optimality, is that they are directly related to statistically interpretable properties of the designs obtained, such as minimising the volume of a joint confidence region for the parameters. However, the assumed relationships with inferential procedures are valid only if the variance of experimental units is assumed to be known. If the variance is estimated, then the properties of the infer-ences depend also on the number of degrees of freedom available for estimating the error variance. Modified optimality criteria are defined, which correctly reflect the utility of designs with respect to some common types of inference. For fractional factorial and response surface experiments, the designs obtained are quite different from those which are optimal under the standard criteria, with many more replicate points required to estimate error. The optimality of these designs assumes that inference is the only purpose of running the experiment, but in practice interpretation of the point estimates of parameters and checking for lack of fit of the assumed treatment model are also usually important. Thus, a compromise between the new criteria and others is likely to be more relevant to many practical situations. Compound criteria are developed, which take account of multiple objectives, and are applied to fractional factorial and response surface experiments. The resulting designs are more similar to stan- dard designs, but still have sufficient residual degrees of freedom to allow effective inferences to be carried out. The new procedures developed are applied to three experiments from the food industry to see how the designs used could have been improved and to several illustrative examples. The design optimisation is implemented through a simple exchange algorithm

Topics: QA
Year: 2012
OAI identifier:
Provided by: e-Prints Soton
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.