Location of Repository

A random vector X with given univariate marginals can be obtained by first applying the normal distribution function to each coordinate of a vector Z of correlated standard normals to produce a vector U of correlated uniforms over (0, 1) and then transforming each coordinate of U by the relevant inverse marginal. One approach to fitting requires, separately for each pair of coordinates of X, the rank correlation, r(?), or the product-moment correlation, rL(?), where ? is the correlation of the corresponding coordinates of Z, to equal some target r?. We prove the existence and uniqueness of a solution for any feasible target, without imposing restrictions on the marginals. For the case where r(?) cannot be computed exactly due to an infinite discrete support, the relevant infinite sums are approximated by truncation, and lower and upper bounds on the truncation errors are developed. With a function ˜r(?) defined by the truncated sums, a bound on the error r(??) ? r? is given, where ?? is a solution to ˜r(??) = r?. Based on this bound, an algorithm is proposed that determines truncation points so that the solution has any specified accuracy. The new truncation method has potential for significant work reduction relative to truncating heuristically, largely because as required accuracy decreases, so does the number of terms in the truncated sums. This is quantified with examples. The gain appears to increase with the heaviness of tails

Topics:
HA, QA75

OAI identifier:
oai:eprints.soton.ac.uk:182235

Provided by:
e-Prints Soton

Downloaded from
http://dx.doi.org/10.1287/ijoc.2013.0563

- (2010). A method for fast generation of Poisson random vectors.
- (2002). A new heavy-tailed discrete distribution for LRD M/G/∞ sample generation.
- (1996). Autoregressive to anything: Time series input processes for simulation.
- (2003). Behavior of the NORTA method for correlated random vector generation as the dimension increases.
- (2002). Correlation and dependence in risk management: properties and pitfalls.
- (2009). Eﬃcient correlation matching for ﬁtting discrete multivariate distributions with arbitrary marginals and normal-copula dependence.
- (2009). Fitting a normal copula for a multivariate distribution with both discrete and continuous marginals.
- (2009). Fitting discrete multivariate distributions with unbounded marginals and normal-copula
- (2003). Modeling and generating multivariate time-series input processes using a vector autoregressive technique.
- (1997). Modeling and generating random vectors with arbitrary marginal distributions and correlation matrix.
- (1989). On the computation of the bivariate normal integral.
- (1958). Ordinal measures of association.
- (2007). Plausible and implausible parameters for mathematical modeling of nominal heterosexual HIV transmission.
- (1966). Some concepts of dependence.
- (2007). Stochastic Simulation: Algorithms and Analysis.
- (1997). Tail probabilities for M/G/∞ input processes (I): Preliminary asymptotics.
- (1952). The maximum likelihood ﬁtting of the discrete Pareto law.
- (2001). Zipf distribution of U.S. ﬁrm sizes.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.