Skip to main content
Article thumbnail
Location of Repository

Involvement of Pyruvate Oxidase Activity and Acetate Production in the Survival of Lactobacillus plantarum during the Stationary Phase of Aerobic Growth � †

By Lidia Muscariello, Frederique Lorquet, Aline Stukkens, Deborah Prozzi, Margherita Sacco, Michiel Kleerebezem and Pascal Hols


In addition to the previously characterized pyruvate oxidase PoxB, the Lactobacillus plantarum genome encodes four predicted pyruvate oxidases (PoxC, PoxD, PoxE, and PoxF). Each pyruvate oxidase gene was individually inactivated, and only the knockout of poxF resulted in a decrease in pyruvate oxidase activity under the tested conditions. We show here that L. plantarum has two major pyruvate oxidases: PoxB and PoxF. Both are involved in lactate-to-acetate conversion in the early stationary phase of aerobic growth and are regulated by carbon catabolite repression. A strain devoid of pyruvate oxidase activity was constructed by knocking out the poxB and poxF genes. In this mutant, acetate production was strongly affected, with lactate remaining the major end product of either glucose or maltose fermentation. Notably, survival during the stationary phase appeared to be dramatically improved in the poxB poxF double mutant. Acetate is the major fermentation end product of the lactic acid bacterium Lactobacillus plantarum when cultivated under aerobic conditions and sugar limitation. It is produced at the expense of lactate as glucose becomes depleted and cells enter the stationary phase of growth. The pathway for lactate-toacetate conversion under these conditions has been shown t

Year: 2006
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.