Skip to main content
Article thumbnail
Location of Repository

Acoustic Vector-Sensor Processing in the Presence of a Reflecting Boundary

By Malcolm Hawkes and Arye Nehorai


We consider the passive direction-of-arrival (DOA) estimation problem using arrays of acoustic vector sensors located in a fluid at or near a reflecting boundary. We formulate a general measurement model applicable to any planar surface, derive an expression for the Cramr--Rao bound (CRB) on the azimuth and elevation of a single source, and obtain a bound on the mean-square angular error (MSAE). We then examine two applications of great practical interest: hull-mounted and seabed arrays. For the former, we use three models for the hull: an ideal rigid surface for high frequency, an ideal pressure-release surface for low frequency, and a more complex, realistic layered model. For the seabed scenario, we model the ocean floor as an absorptive liquid layer. For each application, we use the CRB, MSAE bound, and beampatterns to quantify the advantages of using velocity and/or vector sensors instead of pressure sensors. For the hull-mounted application, we show that normal component velocity..

Year: 2000
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.