Article thumbnail

Carotenoid uptake and secretion by CaCo-2 cells: Beta-carotene isomer selectivity and carotenoid interactions

By Rine During, M. Mahmood Hussain, Diane W. Morel and Earl H. Harrison


Abstract In presence of oleate and taurocholate, differentiated CaCo-2 cell monolayers on membranes were able to assemble and secrete chylomicrons. Under these conditions, both cellular uptake and secretion into chylomicrons of �-carotene (�-C) were curvilinear, time-dependent (2–16 h), saturable, and concentration-dependent (apparent Km of 7–10 �M) processes. Under linear concentration conditions at 16 h incubation, the extent of absorption of all-trans �-C was 11 % (80 % in chylomicrons), while those of 9-cis- and 13cis-�-C were significantly lower (2–3%). The preferential uptake of the all-trans isomer was also shown in hepatic stellate HSC-T6 cells and in a cell-free system from rat liver (microsomes), but not in endothelial EAHY cells or U937 monocyte-macrophages. Moreover, extents of absorption of �-carotene (�-C), lutein (LUT), and lycopene (LYC) in CaCo-2 cells were 10%, 7%, and 2.5%, respectively. Marked carotenoid interactions were observed between LYC/�-C and �-C/�-C. The present results indicate that �-C conformation plays a major role in its intestinal absorption and that cis isomer discrimination is at the levels of cellular uptake and incorporation into chylomicrons. Moreover, the kinetics of cellular uptake and secretion of �-C, the inhibition of the intestinal absorption of one carotenoid by another, and the cellular specificity of isomer discrimination all suggest that carotenoid uptake by intestinal cells is a facilitate

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.