Skip to main content
Article thumbnail
Location of Repository

Angular Momentum Transfer in the Binary X-ray Pulsar GX 1+4

By Murray J R


We describe three presentations relating to the X-ray pulsar GX 1+4 at a workshop on magnetic fields and accretion at the Astrophysical Theory Centre, Australian National University on 1998, November 12-13. Optical and X-ray spectroscopy indicate that GX 1+4 is seen through a cloud of gravitationaly bound matter. We discuss an unstable negative feedback mechanism (originally proposed by Kotani et al, 1999) , based on X-ray heating of this matter which controls the accretion rate when the source is in a low X-ray luminosity state. A deep minimum lasting ∼ 6 hours occurred during observations with the RXTE satellite over 1996, July 19-21. The shape of the X-ray pulses changed remarkably from before to after the minimum. These changes may be related to the transition from neutron star spindown to spin-up which occurred at about the same time. Smoothed particle hydrodynamic simulations of the effect of adding matter with opposite angular momentum to an existing disc, show that it is possible for a number of concentric rings with alternating senses of rotation to co-exist in a disc. This could provide an explanation for the step-like changes in P˙ which are observed in GX 1+4. Changes at the inner boundary of the disc occur at the same timescale as that imposed at the outer boundary. Reversals of material torque on the neutron star occur at a minimum in LX. Accretion, accretion disks — (stars:) pulsars: individual (GX 1+4) — stars: winds, outflows — X-rays: stars — radiation mechanisms: thermal — hydrodynamics

Year: 1999
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.