Location of Repository

Redshift of photons penetrating a hot plasma

By Ari Brynjolfsson


A new interaction, plasma redshift, is derived, which is important only when photons penetrate a hot, sparse electron plasma. The derivation of plasma redshift is based entirely on conventional axioms of physics, without any new assumptions. The calculations are only more exact than those usually found in the literature. When photons penetrate a cold and dense electron plasma, they lose energy through ionization and excitation, through Compton scattering on the individual electrons, and through Raman scattering on the plasma frequency. But when the plasma is very hot and has low density, such as in the solar corona, the photons lose energy also in plasma redshift, which is an interaction with the electron plasma. The energy loss of a photon per electron in the plasma redshift is about equal to the product of the photon’s energy and one half of the Compton cross-section per electron. This energy loss (plasma redshift of the photons) consists of very small quanta, which are absorbed by the plasma and cause a significant heating. In quiescent solar corona, this heating starts in the transition zone to the solar corona and is a major fraction of the coronal heating. Plasma redshift contributes also to the heating of the interstellar plasma, the galactic corona, and the intergalactic plasma. Plasma redshift explain

Topics: Plasma, redshift, heating of solar corona, solar redshift, gravitational redshift, gal
Year: 2005
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://arxiv.org/pdf/astro-ph/... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.