Location of Repository

A Parallel Algorithm for Solving the 3d Schrödinger Equation

By Michael Strickl and David Yager-elorriaga

Abstract

We describe a parallel algorithm for solving the time-independent 3d Schrödinger equation using the finite difference time domain (FDTD) method. We introduce an optimized parallelization scheme that reduces communication overhead between computational nodes. We demonstrate that the compute time, t, scales inversely with the number of computational nodes as t ∝ (Nnodes) −0.95±0.04. This makes it possible to solve the 3d Schrödinger equation on extremely large spatial lattices using a small computing cluster. In addition, we present a new method for precisely determining the energy eigenvalues and wavefunctions of quantum states based on a symmetry constraint on the FDTD initial condition. Finally, we discuss the usage of multi-resolution techniques in order to speed up convergence on extremely large lattices. PACS numbers: 03.65.Ge, 02.70.-c, 02.30.Jr, 02.70.Bf 1 I

OAI identifier: oai:CiteSeerX.psu:10.1.1.315.3289
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://arxiv.org/pdf/0904.0939... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.