Skip to main content
Article thumbnail
Location of Repository

Abstract

By Olivier Finkel and Equipe De Logique Mathématique

Abstract

Locally finite ω-languages, defined via second order quantifications followed by a first order locally finite sentence, were introduced by Ressayre in [Res88]. They enjoy very nice properties and extend ω-languages accepted by finite automata or defined by monadic second order sentences. We study here closure properties of the family LOCω of locally finite omega languages. In particular we show that the class LOCω is neither closed under intersection nor under complementation, giving an answer to a question of Ressayre [Res89]. Key words: Formal languages; logical definability; infinite words; locally finite languages; closure properties.

OAI identifier: oai:CiteSeerX.psu:10.1.1.314.1442
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://arxiv.org/pdf/0803.1842... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.