Skip to main content
Article thumbnail
Location of Repository

Influence of Lipid Heterogeneity and Phase Behavior on Phospholipase A2 Action at the Single Molecule Level

By Martin Gudm, Susana Rocha, Nikos S. Hatzakis, Kalina Peneva, Klaus Müllen, Hiroshi Uji-i, Johan Hofkens, Thomas Bjørnholm and Thomas Heimburg

Abstract

ABSTRACT We monitored the action of phospholipase A2 (PLA2) on L- and D-dipalmitoyl phosphatidylcholine (DPPC) Langmuir monolayers by mounting a Langmuir-trough on a wide-field fluorescence microscope with single molecule sensitivity. This made it possible to directly visualize the activity and diffusion behavior of single PLA2 molecules in a heterogeneous lipid environment during active hydrolysis. The experiments showed that enzyme molecules adsorbed and interacted almost exclusively with the fluid region of the DPPC monolayers. Domains of gel state L-DPPC were degraded exclusively from the gel-fluid interface where the build-up of negatively charged hydrolysis products, fatty acid salts, led to changes in the mobility of PLA2. The mobility of individual enzymes on the monolayers was characterized by single particle tracking (SPT). Diffusion coefficients of enzymes adsorbed to the fluid interface were between 3 µm2/s on the L-DPPC and 4.6 µm2/s on the D-DPPC monolayers. In regions enriched with hydrolysis products the diffusion dropped to ≈ 0.2 µm2/s. In addition, slower normal and anomalous diffusion modes were seen at the L-DPPC gel domain boundaries where hydrolysis took place. The average residence times of the enzyme in the fluid regions of the monolayer and on the product domain were between ≈ 30 and 220 ms. At the gel domains it was below the experimental time resolution, i.e. enzymes were simply reflected from the gel domains back into solution

Topics: single particle tracking, wide field microscopy, phospholipase A2, domain formation, diffusio
OAI identifier: oai:CiteSeerX.psu:10.1.1.313.785
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://arxiv.org/pdf/0907.5342... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.