Skip to main content
Article thumbnail
Location of Repository

DISTINCT DISTANCES IN GRAPH DRAWINGS

By Paz Carmi, Vida Dujmović, Pat Morin and David R. Wood

Abstract

The distance-number of a graph G is the minimum number of distinct edge-lengths over all straight-line drawings of G in the plane. This definition generalises many wellknown concepts in combinatorial geometry. We consider the distance-number of trees, graphs with no K − 4-minor, complete bipartite graphs, complete graphs, and cartesian products. Our main results concern the distance-number of graphs with bounded degree. We prove that n-vertex graphs with bounded maximum degree and bounded treewidth have distance-number in O(log n). To conclude such a logarithmic upper bound, both the degree and the treewidth need to be bounded. In particular, we construct graphs with treewidth 2 and polynomial distance-number. Similarly, we prove that there exist graphs with maximum degree 5 and arbitrarily large distance-number. Moreover, as ∆ increases the existential lower bound on the distance-number of ∆-regular graphs tends to Ω(n0.864138).

OAI identifier: oai:CiteSeerX.psu:10.1.1.313.1373
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://arxiv.org/pdf/0804.3690... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.