Skip to main content
Article thumbnail
Location of Repository

On C 2 -smooth surfaces of constant width

By Brendan Guilfoyle and Wilhelm Klingenberg


Abstract. A number of results for C 2-smooth surfaces of constant width in Euclidean 3-space E 3 are obtained. In particular, an integral inequality for constant width surfaces is established. This is used to prove that the ratio of volume to cubed width of a constant width surface is reduced by shrinking it along its normal lines. We also give a characterization of surfaces of constant width that have rational support function. Our techniques, which are complex differential geometric in nature, allow us to construct explicit smooth surfaces of constant width in E 3, and their focal sets. They also allow for easy construction of tetrahedrally symmetric surfaces of constant width. 1

Year: 2013
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.