Location of Repository

Hall-Littlewood polynomials, alcove walks and fillings of Young diagrams

By Cristian Lenart

Abstract

Abstract. A recent breakthrough in the theory of (type A) Macdonald polynomials is due to Haglund, Haiman and Loehr, who exhibited a combinatorial formula for these polynomials in terms of a pair of statistics on fillings of Young diagrams. The inversion statistic, which is the more intricate one, suffices for specializing a closely related formula to one for the type A Hall-Littlewood polynomials (spherical functions on p-adic groups). An apparently unrelated development, at the level of arbitrary finite root systems, led to Schwer’s formula (rephrased and rederived by Ram) for the Hall-Littlewood polynomials of arbitrary type. The latter formulas are in terms of so-called alcove walks, which originate in the work of Gaussent-Littelmann and of the author with Postnikov on discrete counterparts to the Littelmann path model. In this paper, we relate the above developments, by explaining how the inversion statistic is the outcome of “compressing ” Schwer’s formula in type A. 1

Year: 2013
OAI identifier: oai:CiteSeerX.psu:10.1.1.312.8056
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://citeseerx.ist.psu.edu/v... (external link)
  • http://arxiv.org/pdf/0804.4715... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.