Skip to main content
Article thumbnail
Location of Repository

Correlation length of the 1D Hubbard Model at half-filling: equal-time one-particle Green’s function

By Y. Umeno, M. Shiroishi and A. Klümper


PACS. 71.10.Fd – Lattice fermion models (Hubbard model, etc.). PACS. 71.27.+a – Strongly correlated electron systems; heavy fermions. PACS. 05.30.Fk – Fermion systems and electron gas. Abstract. – The asymptotics of the equal-time one-particle Green’s function for the half-filled one-dimensional Hubbard model is studied at finite temperature. We calculate its correlation length by evaluating the largest and the second largest eigenvalues of the Quantum Transfer Matrix (QTM). In order to allow for the genuinely fermionic nature of the one-particle Green’s function, we employ the fermionic formulation of the QTM based on the fermionic R-operator of the Hubbard model. The purely imaginary value of the second largest eigenvalue reflects the kF( = π/2) oscillations of the one-particle Green’s function at half-filling. By solving numerically the Bethe Ansatz equations with Trotter numbers up to N = 10240, we obtain accurate data for the correlation length at finite temperatures down into the very low temperature region. The correlation length remains finite even at T = 0 due to the existence of the charge gap. Our numerical data confirm Stafford and Millis ’ conjecture regarding an analytic expression for the correlation length at T = 0. The one-dimensional (1D) Hubbard model H =

Year: 2002
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.