Location of Repository

This paper is concerned with small parameter asymptotics of magnetic quantum systems. In addition to a semiclassical parameter ɛ, the case of small coupling λ to the magnetic vector potential naturally occurs in this context. Magnetic Weyl calculus is adapted to incorporate both parameters, at least one of which needs to be small. Of particular interest is the expansion of the Weyl product which can be used to expand the product of operators in a small parameter, a technique which is prominent to obtain perturbation expansions. Three asymptotic expansions for the magnetic Weyl product of two Hörmander class symbols are proven: (i) ɛ ≪ 1 and λ ≪ 1, (ii) ɛ ≪ 1 and λ = 1 as well as (iii) ɛ = 1 and λ ≪ 1. Expansions (i) and (iii) are impossible to obtain with ordinary Weyl calculus. Furthermore, I relate results derived by ordinary Weyl calculus with those obtained with magnetic Weyl calculus by one- and two-parameter expansions. To show the power and versatility of magnetic Weyl calculus, I derive the semirelativistic Pauli equation as a scaling limit from the Dirac equation up to errors of 4t

Topics:
Magnetic field, quantization, pseudodifferential operator, Weyl calculus, Weyl product, asymptotic expansion, gauge invariance, small parameters, Dirac equation

Year: 1951

OAI identifier:
oai:CiteSeerX.psu:10.1.1.311.6988

Provided by:
CiteSeerX

Download PDF:To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.