Skip to main content
Article thumbnail
Location of Repository

Strategy abundance in 2 × 2 games for arbitrary mutation rates

By Tibor Antal, Martin A. Nowak and Arne Traulsen


We study evolutionary game dynamics in a well-mixed populations of finite size, N. A well-mixed population means that any two individuals are equally likely to interact. In particular we consider the average abundances of two strategies, A and B, under mutation and selection. The game dynamical interaction between the two strategies is given by the 2 × 2 payoff matrix () a b c d. It has previously been shown that A is more abundant than B, if (N − 2)a + Nb> Nc + (N − 2)d. This result has been derived for particular stochastic processes that operate either in the limit of asymptotically small mutation rates or in the limit of weak selection. Here we show that this result holds in fact for a wide class of stochastic birth-death processes for arbitrary mutation rate and for any intensity of selection

Topics: Key words, Evolutionary game theory, Finite populations, Stochastic effects
Year: 2008
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.