Location of Repository

Let Ω ⊂ Rn be a C2 bounded domain and χ> 0 be a constant. We will prove the existence of constants λN ≥ λ ∗ N ≥ λ ∗ (1 + χ ∫ dx Ω 1−w ∗)2 for the nonlocal MEMS equation −∆v = λ/(1 − v) 2 (1+χ ∫ Ω 1/(1 − v)dx)2 in Ω, v = 0 on ∂Ω, such that solution exists for any 0 ≤ λ < λ ∗ N and no solution exists for any λ> λN where λ ∗ is the pull-in voltage and w ∗ is the limit of the minimal solution of −∆v = λ/(1 − v) 2 in Ω with v = 0 on ∂Ω as λ ր λ ∗. Moreover λN < ∞ if Ω is a strictly convex smooth bounded domain. We will prove the local existence and uniqueness of the parabolic nonlocal MEMS equation ut = ∆u + λ/(1 − u) 2 (1 + χ ∫ Ω 1/(1 − u)dx)2 in Ω × (0, ∞), u = 0 on ∂Ω × (0, ∞), u(x,0) = u0 in Ω. We prove the existence of a unique global solution and the asymptotic behaviour of the global solution of the parabolic nonlocal MEMS equation under various boundedness conditions on λ. We also obtain the quenching behaviour of the solution of the parabolic nonlocal MEMS equation when λ is large

Topics:
Key words, nonlocal MEMS, pull-in voltage, parabolic nonlocal MEMS, asymptotic

Year: 2013

OAI identifier:
oai:CiteSeerX.psu:10.1.1.311.3414

Provided by:
CiteSeerX

Download PDF:To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.