Skip to main content
Article thumbnail
Location of Repository


By Shinichi Mochizuki


� � � We develop the theory of Frobenioids associated to nonarchimedean [mixed-characteristic] and archimedean local fields. In particular, we show that the resulting Frobenioids satisfy the properties necessary to apply the main results of the general theory of Frobenioids. Moreover, we show that the reciprocity map in the nonarchimedean case, as well as a certain archimedean analogue of this reciprocity map, admit natural Frobenioid-theoretic translations, which are, moreover, purely category-theoretic, to a substantial extent [i.e., except for the extent to which this category-theoreticity is obstructed by certain “Frobenius endomorphisms ” of the relevant Frobenioids]. Finally, we show that certain Frobenioids which naturally encode the global arithmetic of a number field may be “grafted ” [i.e., glued] onto the Frobenioids associated to nonarchimedean and archimedean primes of the number field to obtain “poly-Frobenioids”. These poly-Frobenioids encode, in a purely categorytheoretic fashion, most of the important aspects of the classical framework of th

Year: 2008
OAI identifier: oai:CiteSeerX.psu:
Provided by: CiteSeerX
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.